Purification of flavan-3-ol biosynthesis for co-localization onto nanocarriers and a multi-enzyme assay
نویسنده
چکیده
Flavonoids are polyphenolic secondary metabolites that serve a variety of purposes, from assisting pollination in plants to providing anti-cancerous activity in humans. It is the wide range of functions that give these molecules the highly revered status they have today. Range in function can be linked with the range in structure, and with over 10,000 different flavonoids known, they make up one of the largest groups of natural products. One common sub-class of flavonoids is the flavan-3-ols, which are known for their health benefits and tendency to condense to form proanthocyanidins, or condensed tannins. Both of these classes of flavonoids represent the valuable end products of a highly investigated, yet still not fully understood, section of flavonoid biosynthesis. Furthermore, some of the intermediates are highly unstable and have never been isolated in planta. The enzymes that comprise this section are highly interconnected and regulated, suggesting that a possible multi-enzyme complex exists. With this evidence, we propose to create a synthetic complex using a polymer nanocarrier using anthocyanidin synthase and reductase (ANS and ANR, respectively), the final two enzymes in flavan-3-ol biosynthesis. Along with the preceding enzyme, dihydroflavonol 4-reductase (DFR), they have been separately and recombinantly expressed in E. coli. Both ANR and ANS are fused to a specific tag for binding to the nanocarrier, ANR – 6xHis and ANS – (monomeric) streptavidin. Specifying binding sites will allow adjustable enzyme concentration and distribution on the nanocarrier. DFR, which has a stable substrate, allows for generation of the highly unstable ANS substrate. All three enzymes have been designed and purified for co-localization on the nanocarrier and all have exhibited activity in an assay designed for the multi-enzyme reaction.
منابع مشابه
Purification and optimization of sequential biosynthetic enzymes for co-localization onto a nanocarrier
Flavonoids are polyphenolic plant secondary metabolites with many purposes, including providing pigmentation in plants and anti-oxidant and anti-cancerous activities in humans. There are over 10,000 different flavonoids known, making them one of the largest groups of natural products. One major sub-class of flavonoids is the flavan-3-ols, which are known for their health benefits and the abilit...
متن کاملFlavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica.
Proanthocyanidins (PAs) are common polyphenolic polymers of plants found in foliage, fruit, bark, roots, rhizomes, and seed coats that consist of flavan-3-ol units such as 2,3-trans-(+)-catechin and 2,3-cis-(-)-epicatechin. Although the biosynthesis of flavan-3-ols has been studied in angiosperms, little is known about their biosynthesis and ecological roles in gymnosperms. In this study, the g...
متن کاملFlavan-3-ols in Norway Spruce: Biosynthesis, Accumulation, and Function in Response to Attack by the Bark Beetle-Associated Fungus
Proanthocyanidins (PAs) are common polyphenolic polymers of plants found in foliage, fruit, bark, roots, rhizomes, and seed coats that consist of flavan-3-ol units such as 2,3-trans-(+)-catechin and 2,3-cis-(–)-epicatechin. Although the biosynthesis of flavan-3-ols has been studied in angiosperms, little is known about their biosynthesis and ecological roles in gymnosperms. In this study, the g...
متن کاملTwo new isoflavones from Ceiba pentandra and their effect on cyclooxygenase-catalyzed prostaglandin biosynthesis.
The new isoflavone glucoside vavain 3'-O-beta-d-glucoside (1) and its aglycon, vavain (2), were isolated from the bark of Ceiba pentandra, together with the known flavan-3-ol, (+)-catechin, These novel structures were elucidated by one- and two-dimensional NMR experiments and by MS, IR, and UV spectroscopy as 5-hydroxy-7,4',5'-trimethoxyisoflavone 3'-O-beta-D-glucoside (1) and 5,3'-dihydroxy-7,...
متن کاملChanges in phenolic compounds in Litchi (Litchi chinensis Sonn.) fruit during postharvest storage
Litchi (Litchi chinensis Sonn. cv. Huaizhi) fruit were stored at ambient temperature (20–25°C) for up to 7 days and at 4°C for up to 35 days for separation, purification and identification of individual phenolic compounds and investigation of their changes during postharvest storage. Results indicate that flavan-3-ol monomers and dimers were major phenolic compounds representing about 87.0% of ...
متن کامل